
Abstract The possibility of model operation of an infor-
mational field of an entity (molecule), which can be rep-
resented as a discrete parameter system of elements (at-
oms), is shown. The idea of the approach is based on the
application of the Shannon’s method (quantitative esti-
mation of the information) not only to the molecular
structure, but also to the surrounding space. The perfor-
mance of an information field of a molecule can be uti-
lized for the solution of the “structure–property” tasks.
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Introduction

As is known from Latin, the term “information” means
“explanation”, “statement”. According to Claude Shan-
non the more formal definition of information and its
quantitative estimation is the following: “The degree of
uncertainty of a situation can be defined by the number
of possible variants of development of this situation”. 
[1] Hence, an objective basis of the information is “dis-
tinction” or “variety”, which agrees with the information
concepts of Ashby and Glushkov. [2] The logarithm of
the possible number of outcomes (ways out) is used to
estimate the quantity of the information according to
Hartley’s hypothesis. [3] The minimal uncertainty of a
situation corresponds to two outcomes (for example,
throwing of a coin – “heads” or “tails”). If the binary
logarithm is used, the elimination of uncertainty of this
situation equals 1 (I=log22=1), which corresponds to the

informational quantity in one “bit”. Different probabili-
ties (Pi) occur in the case of various outcomes (i) of de-
velopment of a situation. Hence, it is more correct to es-
timate the quantity of the information by Shannon’s for-
mula. [1]

Shannon’s approach is based on discrete representa-
tion of the “object” (situation, system), consisting of a
set M of “elements” (outcomes). Let the power of this set
equal n (|M|=n). If the equivalence relation is introduced,
all elements of this set form subsets (mj). Thus, each of
subset contains only the following equivalent elements:

The probability of a choice of any element from the ith
subset is .

According to Shannon, the quantity of the informa-
tion of one element of the system (object) is defined as:

where lb≡log 2. For the above-mentioned situation of
throwing of a coin 1 bit of the information is:

This agrees with Hartley’s approach.
If uncertainty is absent, i.e. the situation has only one

outcome, the system consists of one kind of element only,
I=0, because M=m1;n=n1 and p1=1. A maximum quantity
of the information is found in the case when the situation
has the maximal possible outcomes: the system consists
of different elements only: .

Thus, the information content of a system is defined
by both the quantity of elements (n) and elements meth-
od distribution on subsets (|mi|=ni) only. Such an ap-
proach ignores the qualitative content of the information
completely. The positive feature of this approach is anal-
ysis of any informational processes and systems based
on general principles.
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The molecular structures are easily formalized as var-
ious discrete models. Informational content is easily cal-
culated for each model. [4, 5] For example, we consider
halogen-substituted ethane (see Fig. 1). As is evident
from Fig. 1, the simplest models of molecules – molecu-
lar graphs (a) contain the minimum information. Taking
into account the nature of the atoms in a molecular struc-
ture, a large quantity of information results (b, c). Differ-
entiation of atoms of one nature depending on their
neighbors also leads to an increase of the information
quantity (c). Spatial models of the molecular structure
are more adequate and the informational content is a
maximum (d, e). Thus, the information content in a mo-
lecular structure can easily be calculated by the Shannon
formula. The informational characteristics of molecules
are now used widely in computer synthesis, [6] as well
as for the solution of “structure–property” tasks. [5, 6]

Model of the informational field

In the literature cited we have tried to investigate a rather
fundamental problem “How does the information of the
molecular structure influence the surrounding space?”,
i.e. to simulate an information field (IF) of a molecule. It
is more correct to consider a field of the potential infor-
mation (FPI not IF), since the information arises only
when there is a “receiver” (“observer”). The FPI formal
model was constructed previously. [7] According to the
formal FPI model, it is necessary to apply Shannon’s ap-
proach consistently to research the “object” and sur-
rounding space. In other words, this space, as well as the
“object”, have to be discretized and considered as a
system of elements.

Let us consider the idealized situation: the “empty”
infinite space is divided into identical areas (cells). We

Fig. 1 Information content of a molecular structure

Fig. 2 Fragment of an informational field of a one-element object

Fig. 3 Isotropic model of the informational field
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have no bits of information, since all cells are absolutely
identical. There is no variety; hence there is no informa-
tion. However, as soon as we place any object in this
space, then the equivalence of many cells is eliminated.
Cells become different and their difference depends on
the observation place of the object. We (receiver–observ-
er) can receive different quantities of information about
this object at various places in the surrounding space.
Thus, for modeling the object FPI in a definite area, we
should be able to differentiate cells of space surrounding
the object. When all cells in the definite area of space are
divided into groups, we will need only to apply 
Shannon’s formula and to calculate the potential infor-
mation in each cell, in a group of cells and in the whole
area.

Generalizing the above, the following conclusion is
possible: from a formal position the model of the poten-
tial information field for any object describes a situation
where the surrounding space is structurized by the ob-

ject, i.e. the object generates the potential information in
this area.

What is the reason? A complex of real physical fields
of the research object can itself cause structuring of the
surrounding space. However, in the given context we do
not consider how the structuring of space occurs. We an-
alyze only results. We do not negate physical mecha-
nisms of information transfer from the object in sur-
rounding space; we do not concretize them.

Let us consider the elementary example. The object is
one cell; then the surrounding space is divided into con-
centric layers of cell-groups (see Fig. 2). According to
Shannon’s formula the information potential in the given
cell depends only on the total amount of cells considered
(n) and on the quantity of cells of the given group (ni)1.
It is evident that in each subsequent layer the informa-

1 In the given example the model for the presentation was simpli-
fied. Angular and non-angular cells were not distinguished.

Fig. 4 The informational field
of benzene
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tion potential is less than in the previous one. Thus, the
considered model FPI correctly reflects the natural de-
crease of the potential information when the “receiver”
(observer) moves away from the object.

Developing the given approach, it is easy to construct
the isotropic model of an information field for spaces of
any dimension. Two-dimensional space is given as an il-
lustration (see Fig. 3). Let the discretization step of space
be ε, where ε�R (ε is a tuning parameter of the model
and R the radius of the area of space considered). It is
necessary to calculate the binary logarithm of the rela-
tion of the area (volume) of all area of research space
(total number of points) to the area (volume) of a layer
of space with thickness (r+ε) (amount of points of the
given group) for an estimation of the potential of an in-
formation field for a dot object at a distance r.

The procedure for spaces of different dimension is
given in Fig. 3, where R determines the research area of
space (r changes from 0 up to R); I(r) – informational
potential at distance r from the “object”; I(0) – informa-

tional potential at a point corresponding to the object;
I(R) – informational potential in the borderline research
area.

Only the isotropic model of FPI, where R=20 Å;
ε=0.05 Å was used in this work.

It should be considered that the information, as entro-
py, has additive character for application of the given
model FPI to complex objects consisting of several ele-
ments. [3] This means that the FPI of a complex object
can be modeled as a superposition of the FPI of its ele-
ments. Moreover, when dimensionless weight parame-
ters

describing any property (p) of the elements of an object
are introduced, a weighted FPI can be constructed. In
fact, such a field reflects information about the distribu-
tion of the considered property in space. The FPI of ben-
zene weighted by mass is given, for example, in Fig. 4.

Fig. 5 Parameters of the infor-
mation field of bromofluoro-
benzene
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In this model the potential (in bit) of the information-
al field, as well as the antigradient2 (in bit Å–1) and the
divergence (in bit Å–2) of the FPI (see Fig. 5) can be cal-
culated based on the standard procedure. [8]

Molecular informational fields

Different aromatic compounds3 were considered in order
to illustrate the opportunities of the given model of an
information field. The information fields were weighted
by atomic mass for all systems.

The monosubstituted benzenes were considered in the
first set of molecules investigated. As can be seen from

Fig. 6, the informational potential and the average char-
acteristics of informational fields increase with increase
of the substituent mass for all these molecules. The mean
square deviation of an informational field potential var-
ies analogously. These results are expected and confirm
that the developed concept does not contradict common
sense.

All isomers of difluorobenzene were considered in the
second set of molecules investigated (see Fig. 7). The
characteristics of an informational field for these com-
pounds decrease from the ortho to the para isomer. It is
evident that this is caused by the mutual influence of the
informational fields of the fluorine atoms.

Fig. 6 Parameters of the information field of monosubstituted
benzenes (where total inf.pot. (A) is the total informational poten-
tial, inf.pot. in engaged cells (B) is the informational potential in
engaged cells, aver.inf.pot. (C) is the average informational poten-
tial and root-mean sq.dev. (D) is the mean square deviation of po-
tential of an informational field)

Fig. 7 Parameters of the informational field of isomers of diflu-
orobenzene (where total inf.pot. (A) is the total informational po-
tential, inf.pot. in engaged cells (B) is the informational potential
in engaged cells, aver.inf.pot. (C) is the average informational po-
tential and root-mean sq.dev. (D) is the mean square deviation of
potential of an informational field)

2 The orientation of vectors of an antigradient of an information
field indicates a direction of the information distribution.
3 These molecules are flat and convenient for visual analysis.
However, the model of an information field is applied for any mo-
lecular structures.
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The isomers of fluorochlorobromobenzene are the
most interesting. If the information content of the molec-
ular graph is analyzed for all of them, it is easy to see
that it is the same for all compounds. In these cases the
information content of the molecular structures equals
lb(9) (all atoms4 vary).

On the other hand, the characteristics of an informa-
tional field vary for all these molecules and allow them
to be discriminated (see Fig. 8).

The synergism of the mutual influence of information
fields of the substituents is maximal for isomers 1, 2, 3

and 4. The information interactions of the substituents
are minimal for isomers 7, 8 and 10, since these substitu-
ents are located at the largest distance from each other.

In the framework of the informational field model we
have tried to solve some “structure–property” tasks.

Solution of QSAR tasks by means of structural 
parameters of the molecular informational fields

The series of the steroid molecules (see chart in Fig. 9)
were investigated to assess the application of parameters
of a molecular informational field for QSAR tasks. [9,
10] The CoMFA approach, as one of the most popular
methods for QSAR tasks solution, was tested on this se-
ries of compounds. [9, 10, 11] The affinity of given com-
pounds for Testosterone-Binding Globulin (ATeBG) and4 The group C–H was considered as a joint atom.

Fig. 8 Parameters of the informational field of trisubstituted benz-
enes.(where total inf.pot. (A) is the total informational potential,
inf.pot. in engaged cells (B) is the informational potential in en-
gaged cells, aver.inf.pot. (C) is the average informational potential
and root-mean sq.dev. (D) is the mean square deviation of poten-
tial of an informational field)

Fig. 9 Chart of the steroids tested

Table 1 Parameters of the correlation equations A=ax+by+cz+d
describing the relationship between biological activity and charac-
teristics of an informational field for steroids

Activity (A) ACoBG ATeBG

a –(0.065±0.003) (0.035±0.002)
ta

a 10.1 8.0
x DL(56)b AGQ(24)c

b –(0.833±0.055) (0.389±0.029)
tb

a 7.0 6.1
y DRf(13)d PQ(102)e

c (1.531±0.215) -(0.562±0.077)
tc

a 3.3 3.4
z DL(123)b DQ(39)f

d –(0.177±0.45) –(6.875±0.052)
td

a 0.2 60.7
R2g 0.933 0.912
CVR2h 0.898 0.862
Si 0.33 0.39
Fj 78 59

a t is the Student’s coefficient (critical value of t=2.11 for α=0.95)
b DL(56) and DL(123) is the divergence of the informational field
weighed by lipophilicity (in cells 56 and 123)
c AGQ(24) is the antigradient of the informational field weighed by
charge (in cell 24)
d DRf(13) is the divergence of the informational field weighed by
refraction (in cell 13)
e PQ(102) is the potential of the informational field weighed by
charge (102)
f DQ(39) is the divergence of the informational field weighed by
charge (in cell 39)
g R is the coefficient of correlation
h CVR is the coefficient of correlation in requirements for “leave-
one-out cross-validation”
i S is the standard error of estimate
j F is the value of Fisher’s criterion (critical value of F=3.2 for
α=0.95)



284

for Corticosteroid-Binding Globulin (ACoBG) were con-
sidered as target properties.

The steroids investigated were considered within for-
malism frameworks of the molecular lattice model. [12]
All these molecules were placed in a cubic lattice with
the cell size of 2 Å. Structures were aligned on carbon
atoms of the steroid skeleton. The investigated area of
space is a parallelepiped consisting from 252 cells
(6×6×7). The steroids are located in the center of this
parallelepiped. The potential, antigradient and diver-
gence of an informational field were estimated in each
cell. These parameters were weighted by charges, lipo-
philicity, refraction, mass, polarizability and electronega-
tivity. A set of 4,536 structural parameters was obtained.
It is clear that regression analysis cannot be applied for
this set of parameters. Therefore, one parameter was se-
lected from each group of cross-correlated parameters (at
the level R=0.9) at the beginning of the analysis. This
procedure allows the total number of parameters be de-
creased to 590. The equations connecting parameters of
an informational field of steroids with their biological
activity were calculated by stepwise regression [13] (see
Table 1). The corresponding cells are shown in Figs. 10
and 11. 

It is noteworthy that the statistical characteristics of
these equations (see Table 1) are a rather better than

those given by CoMFA (R2=0.897 for CoBG and
R2=0.873 for TeBG). [11]

As seen from Figs. 10 and 11, the biological activity
is defined by the characteristics of the information fields
in the regions of space near the functional groups of the
steroids in both cases. It is quite logical that the equa-
tions include the characteristics of information fields
weighted by charges, lipophilicity and refraction. These
properties of molecular fragments can define the charac-
ter of the appropriate intermolecular interactions of ste-
roids with globulins.

Thus, the concept of an information field of mole-
cules can be promising for the analysis of the peculiari-
ties of molecular structure and for the solution of various
applied “structure–property” tasks.
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